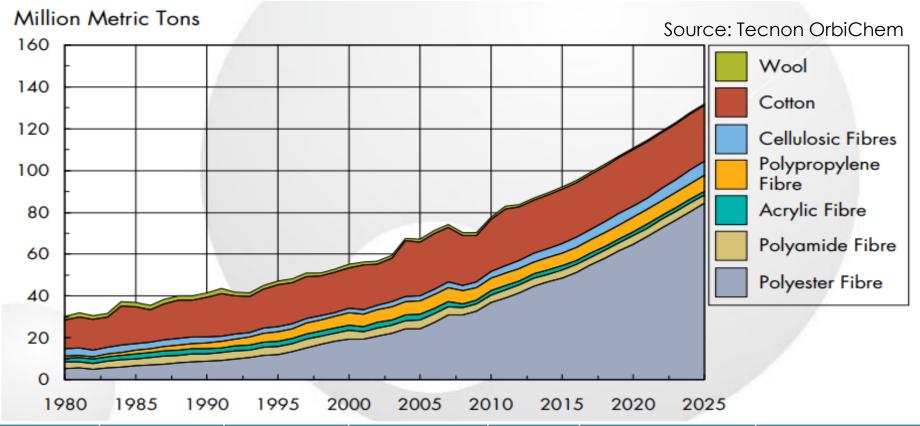


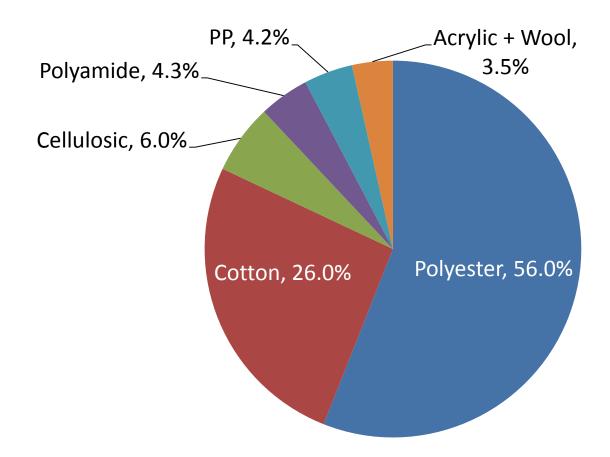
Present status of world fiber production and Development trend of Polyester Fiber

吳汝瑜 博士 Dr. Roy Wu

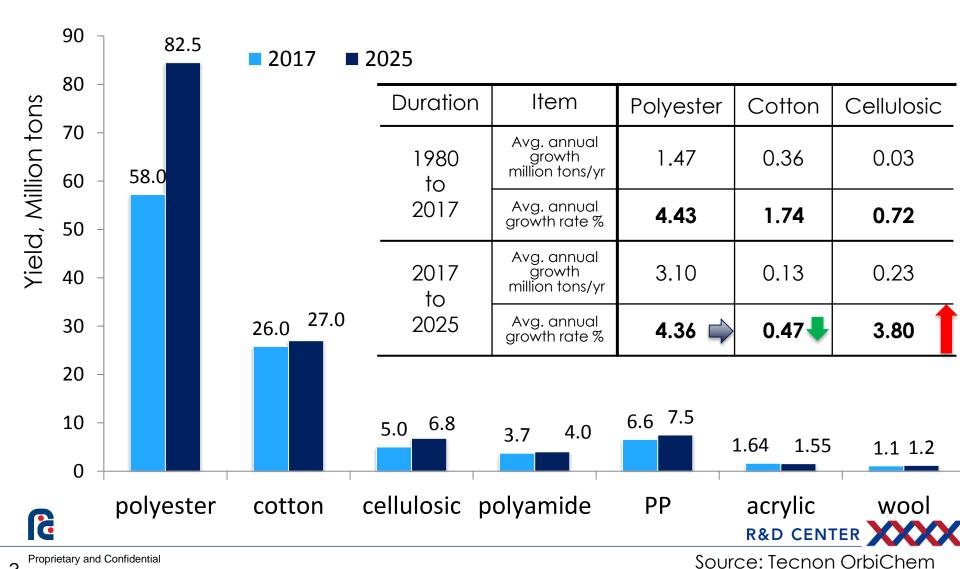

遠東集團研究發展中心 副總經理

Executive Vice President FENC R&D Center

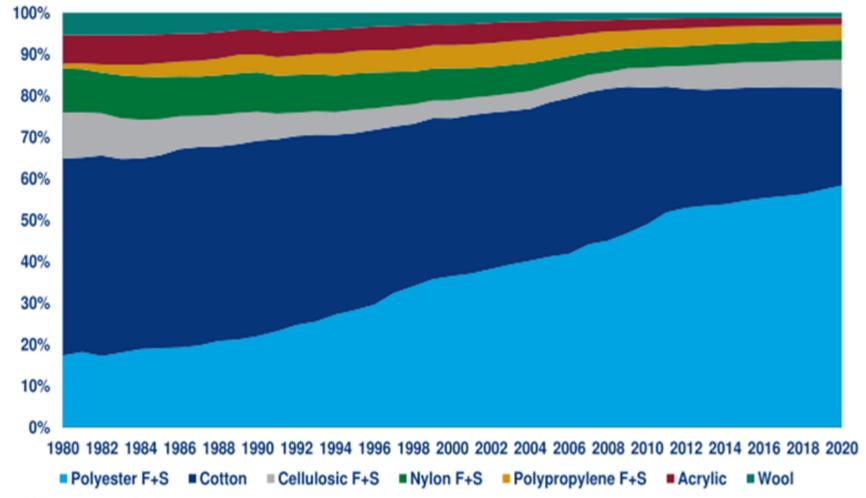
Sept. 18, 2017


World Fiber Production 1980~2025

From 1980-2017	1980 yield Million tons	2017 yield Million tons	Total growth by yield Million tons	Total growth %	Average annual growth Million tons/yr	Average annual growth rate (%/yr)
Polyester	5.0	58	53	1060	1.47	4.43
Cotton	13.1	26	12.9	98	0.36	1.74
Cellulosic	3.8	5	1.2	32	0.03	0.72

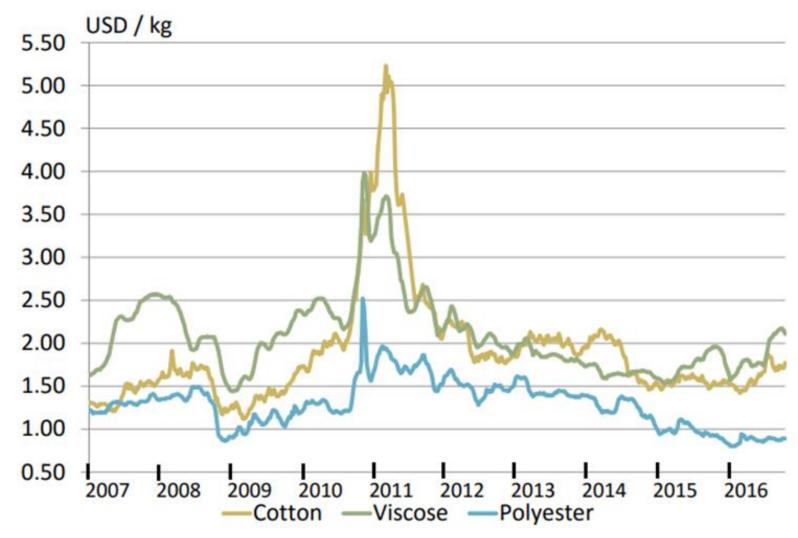

2017 World Fiber Production

At 2017, total fiber yield: 100 Million tons



Future Fiber Growth Prediction (2017-2025)

World fiber mill consumption share



Source: PCI Wood Mackenzie Red Book 2016

Viscose, Polyester and Cotton price: Last 10 Year

Fibers cost and Properties

Fiber	Cotton	Rayon	Polyester	Nylon	Acrylic	PP	Wool
Price, USD/Kg Sep.,20 17	1.7	2.0	1.2	2.5	2.0	2.5	14
Strength	++	+	+++	+++	++	+++	-
Dimensional Stability	+	-	+++	+++	+++	+++	-
Moisture region	+++	+++	-	++	+	_	+++
Wrinkle recovery	-	-	+++	++	++	++	-
Resistance to Pilling	+++	+++	-	+	-	++	+
Abrasion resistance	+	-	+++	+++	+	+++	++
Static charge	+++	+++	-	+	+	_	+++

+++: excellen; ++: Good; +: Fair; -: deficient

- Rayon's properties are nearly the same as Cotton.
- PET has the best cost performance ratio

The Present State of Polyester fiber modification

Item	Physical	Chemical
Hydrophobic (non-breathable)	Special Cross sectionMicrofiber	Hydrophilic modification
Hand feel	Crimp (bulky)Microfiber	Surface coating
Static charge	• Anti static Filler	Hydrophilic modification
Pilling	Low molecular weightVotex spinning	 Copolymerization

FENC future development for polyester fiber (1/2)

1. Adding more functionality In PET fiber

Moisture management

- Easy dry: TopCool*®
- Fluorine-free DWR Polyester:

TopDry® Zero

Thermal Regulation

- nIR reflection: Solarfree Red
- Infrared absorption: Sunex®
- Heating by moisture vapor condensing
 TopHeat*
- Cooling by fast water evaportation
 TopCool*

Health & Hygiene

- Anti-microbial: **Eagelon®**
- Odor management: Topfresh

Hand Feel

Nylon-like hand feel: Topsoft

FENC future development for polyester fiber (2/2)

2. Sustainability

FENC owns 2 PET recycle plants, one in Taiwan, one in Japan with total 90,000 tons capacity

Recycling

- BTB/BTF (physical recycling)
- Future

FTF (Chemical recycling)

Pilot plant ready by mid-2018 • Low temp. dye-able

BTB: bottle to bottle BTF: bottle to fiber FTF: fabric to fabric

Dyeing & finishing

- Waterless dyeing (scCO2)
- Solvent/Water free Coating
- Novel Dyes for Dope Dyeing

Environmental friendly technology

- PFC free DWR yarn
 - Intrinsic
 - Coating on fiber
- Antimony free PET
- Recycle PET-based waterproof and breathable film

Conclusion

- Polyester fiber will continue to grow at an accelerating speed in the foreseeable future
 - Low petro price
 - Advancement in manufacturing technology(PX, TPA, EG, PET)
 - Continuously adding more functionality
 - More sustainable technologies: FTF recycling, fluorine-free coating, antimony free PET, waterless dyeing, dope dyed etc.
- II. Cotton supplier and industries should keep an eye on the future development of cellulosic fibers

Thank you for your attention